Rate of Convergence in Inviscid Limit for 2D Navier-Stokes Equations with Navier Fricition Condition for Nonsmooth Initial Data
نویسندگان
چکیده
منابع مشابه
Rate of Convergence in Inviscid Limit for 2D Navier-Stokes Equations with Navier Fricition Condition for Nonsmooth Initial Data
We are interested in the rate of convergence of solutions of 2D Navier-Stokes equations in a smooth bounded domain as the viscosity tends to zero under Navier friction condition. If the initial velocity is smooth enough( ), it is known that the rate of convergence is linearly propotional to the viscosity. Here, we consider the rate of convergence for nonsmooth velocity fields when the gradient ...
متن کاملInviscid Limit of Stochastic Damped 2d Navier-stokes Equations
We consider the inviscid limit of the stochastic damped 2D NavierStokes equations. We prove that, when the viscosity vanishes, the stationary solution of the stochastic damped Navier-Stokes equations converges to a stationary solution of the stochastic damped Euler equation and that the rate of dissipation of enstrophy converges to zero. In particular, this limit obeys an enstrophy balance. The...
متن کاملOn the inviscid limit of the Navier-Stokes equations
We consider the convergence in the L norm, uniformly in time, of the Navier-Stokes equations with Dirichlet boundary conditions to the Euler equations with slip boundary conditions. We prove that if the Oleinik conditions of no back-flow in the trace of the Euler flow, and of a lower bound for the Navier-Stokes vorticity is assumed in a Kato-like boundary layer, then the inviscid limit holds. M...
متن کاملInviscid Large deviation principle and the 2D Navier Stokes equations with a free boundary condition
Using a weak convergence approach, we prove a LPD for the solution of 2D stochastic Navier Stokes equations when the viscosity converges to 0 and the noise intensity is multiplied by the square root of the viscosity. Unlike previous results on LDP for hydrodynamical models, the weak convergence is proven by tightness properties of the distribution of the solution in appropriate functional spaces.
متن کاملLiouville Theorem for 2d Navier-stokes Equations
(One may modify the question by putting various other restrictions on (L); for example, one can consider only steady-state solutions, or solutions with finite rate of dissipation or belonging to various other function spaces, etc.) We have proved a positive result for dimension n = 2 which we will discuss below, but let us begin by mentioning why the basic problem is interesting. Generally spea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Chosun Natural Science
سال: 2013
ISSN: 2005-1042
DOI: 10.13160/ricns.2013.6.1.053